Hydrological Modelling of Droughts and Stormwater Events to Develop Climate **Resilient Water Management Strategies**

Ingenieurgesellschaft für Wasser und Umwelt mbH

Alexandra Amann¹, Sven F. Grantz², Katrin Brömme³, Hannah Behrens⁴, Timo M. König³; Oliver Buchholz¹, Paul Wagner², Nicola Fohrer² Hydrotec Ingenieurgesellschaft für Wasser und Umwelt mbH, ² delta h Ingenieurgesellschaft mbH, ³ Christian-Albrechts-Universität zu Kiel (CAU), ⁴ Lippeverband

The project "KliMaWerk"

- Project aim: Development of strategies to increase the hydrological and ecological resilience of river basins to droughts and heavy rainfall events.
- Focus of this presentation: Hydrological modelling to analyse the development of the landscape water balance, the underlying processes, and likely effects of different measures and land management strategies on climate resilience.

Analysis and modelling of processes

- Understanding the extremes and their consequences
 - 2. Development of strategies

Study area: Lippe River Basin, North Rhine-Westphalia (Germany).

SWAT+

Scenario 1 – Best case

Scenario 2 - heavy rainfall

Hydrological Modelling with SWAT+ **Entire Research Area and Upscaling**

- **Characteristics of catchment area**
 - Lippe River (4,860 km²)
 - Length of Lippe River: ~220 km (flows into the Rhine River)
 - Land use: agriculture 53%, grassland 12%, forest 19%, urban 12%
 - Controlled water transfer to the Datteln-Hamm-Canal of Ø 37% from the Lippe River streamflow; in turn a minimum river runoff of 10 m³/s is maintained

Hydrogeological Modelling with SPRING **Sub-Basin Study**

Workflow hydrogeological modelling

- 1. Set up of a 2D groundwater flow model
- 2. Surface water network: simplified approach for surface runoff
- 3. Determination of transient groundwater recharge using the integrated method RUBINFLUX (period 2011 - 2021, daily steps)
- 4. Steady-state and transient calibration of the model using data from groundwater level monitoring

Workflow hydrological modelling

highlighted key features.

. Model parameterisation including water transfer point Lippe River / Datteln-Hamm-Canal

2. Calibration at river gauges, not influenced by

- Water transfer (gauge Kesseler 3)
- Rhine River (gauge Schermbeck 1)

3. Continuous simulation at a daily time step (2011 - 2021)

Fig.: Precipitation and runoff hydrographs in the calibration period (hydrological years 2012 - 2016)

Hydrological Modelling with NASIM **Sub-Basin Study**

- Characteristics of catchment area
 - Creek System Hammbach-Wienbach (146 km²)

and river gauges

Fig.: Water table contour lines, depth to water table, deviation measured/modelled water levels (steadystate)

Coupling NASIM & SPRING – Workflow & Concept

- Comparison of the simulation results
- Post-processing and variation of existing model building blocks
- Exchange of model results via defined exchange files/interfaces
- Simulate the models separately (multiple iterations)
- Coupling of models during simulation at predefined coupling points

- Length of Hammbach Creek ~21 km, Wienbach Creek ~14 km
- Land use: agriculture 57%, grassland 8%, forest 28%, urban 6%
- Mining subsidence areas & pumping stations
- "impermeable" Bottrop Strata (marl), different aquifers
- Large depth to the groundwater table (20 70 m) in the North
- Workflow hydrological modelling

- 1. Model set up: parameterisation of sub-areas (natural & urban areas)
- 2. Coupling to groundwater flow
- 3. Calibration at gauging stations
- 4. Continuous simulations in 5-minute steps (2011 - 2021)
- Fig.: Intermediate calibration results including comparison to groundwater based runoff (SPRING)

- **First steps**: Transfer of the groundwater leakage values (SPRING) to the NASIM model
- Further coupling points: Groundwater recharge, surface water level, surface runoff

Acknowledgements

Bundesministerium für Bildung und Forschung Forschung für Nachhaltigk

The project KliMaWerk has been launched in the context of the "WaX" funding measure and is a part of the federal research program on water "Wasser: N", which contributes to the strategy "Research for Sustainability (FONA)" of the BMBF (Federal Ministry of Education and Research, Germany).

Project partners

EGLV

Emschergenossenso Lippeverband

UNIVERSITÄT

D U I S B U E S S E N

Offen im Denken

	Hydrotec	CAU
naft	eco logic	Christian-Albrechts-Universität zu Kiel Abteilung Hydrologie und Wasserwirtschaft
G	Plo	unungsbüro Koenzen wasser und Landschaft

schaft

Hydrotec Water and Environment Consulting Engineers GmbH – Bachstraße 62-64 – D-52066 Aachen – Tel: +49 241 946890 – mail@hydrotec.de – www.hydrotec.de – (04/2023)